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1 Introduction

The study of the existence and asymptotic behavior of global solutions of initial-boundary value
problems for the wave equation with nonlinear operators such as

u — Agu+ (—A)*ug — h (u) = ¢ (t, )

where Aqu = > 77, 821- ggi
1999), (Hongjun & Hui, 2007).

For this problem, Gao & Ma (1999) (see also (Hongjun & Hui, 2007)) obtained the global
existence of the solution when ¢ > p with small initial data when ¢ < p. When ¢ = 2, with the
linear damping term o = 0 , Levine (1974) and (Levine, 1974) proved that solution blows up
in the finite time with negative initial energy. When ¢ = 2, and the damping term is given by
|ug|" ug, r > 0, many authors studied the existence and uniqueness of the global solution and
the blowup of the solution, (see (Levine et al., 1997), (Georgiev & Todorova, 1994)).

In this paper we consider the nonlinear initial-boundary value problem

{ ui — Aqui + (=A) Y w1y — f1 (u1,u2) = g1 (¢, x),
ugp — Dgua + (=A) ugy — fo (u1,u2) = g2 (¢, ),

q
g—;) , 0 < a < 1]h(u)] ~ |u? is investigated in (Gao & Ma,

uj(t,x) =0, t>0, x €0, j=1,2, (2)
Uj(o,l‘):goj(aj),th(o,x):de(x), ref), j=12. (3)

Here €2 is a bounded domain in R", n > 1 with smooth boundary 09Q,¢t > 0; z € Q;0 <
a < Lfi(u,up) = ar |ur]” uol” uns four, u) = ag |ur]”* ugl” ugigr, g1 ¢ [0,T] x Q —
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q
Rdu = Y2 o (|22 82 ) 50 = 2, a1, a0 € Roand (—4)%u = £, A% (u, )5, where
0 <A <A< A3 <. 1,99, 03, ... are the sequence of eigenvalues and eigenfunctions of —A

in Hi(Q), respectively.

The norm in Ly(f2) is denoted by ||[|, and in W} (Q) we use the norm

n
lulls = Z iz g
—1

We give some of the basic properties of the operators used here. The degenerate operator

Aqu is bounded, monotone and hemicontinuous from qu(Q) to W, 1(Q), where %Jr % = 1. The
(—A)® powers for the Laplacian operator is defined by

—A)*u =" A (u, 05)p;
=1

We investigate the existence of the global solutions of problem (1) - (3).
In the case ¢ = 2, a = 0 this problem was studied in (Medeiros & Miranda, 1990), (Miranda & Medeiros,
1987), (Aliev & Yusifova, 2017), (Aliev & Rustamova, 2016), (Wang, 2009), (Ye, 2014).

2 Preliminaries and main results

Assume that
nq

2(n —q)

0<p<4oo for n<gq. (5)

0<p< —1, forn>gq, (4)

To prove the existence of global solutions we use the Galerkin method.

Theorem 1. Let conditions (4)-(5) hold, and p < qg—l. Then for any wujo € Wl(Q) uj1 €

Ly(2) and gj(.) € L2([0,T) x Q) ,j = 1,2 there exists a functions uy,ug : [0,T] X Q — R such
that

u;j € Loo(0,T; V[Z,I(Q)), (6)

Wi € Loo(0,T5 Lo(9)) () L2(0,T; D((~A)72)), (7)

u;(0) = wujo, u;(O) =u;1, j=1,2, (8)

W), — Aquj + (—A) % uj, — f; (ul,uQ) =yg;(t,xz),j=1,2. 9)

Next we consider an existence result when p > 4=. In this case, the global solution is obtained

with small initial data.
Using the Holder and Young inequality we have

2
1
Jomeaml e < 557 [ o P e <
Q —ve

2(p+1)
2p+1) 2 2(p+1) 2 q

q
S S [1Vemitas) T e | [ Womlael . a0
Jj=1 j=1
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where C is the Sobolev constant for the inequality

(p+1)
H@HLQ(pH)(Q) < CQ(P-H HV¢||L2(/J+1)(Q) )

For each m € N we put

2(p+1)
q

2 2
1 1
Em=§j,/|wjm2dw+§ j/\Vsojmlqdw+C§éﬁii> E)/ Vsl d » (1)
o 2a; Jq 940 =7 J0

where ag = min{ay, as}.
We also introduce the polynomial

Q) = = - Ci "
Q(z) increases in [0, zg] , where
. Ve
o 2a0(p +1)C, 2(p-+1)

2(p+1)

Theorem 2. Let conditions (4),(5) hold, p > q21,uj0 € WHQ), uji € La(Q) and g;(.) €

Ly(]0,T] x Q) ,j = 1,2. Suppose inaddition that initial data satisfy the following conditions

Z IV@ill?, 0y < 70 (12)

Eo—i-WZ/ /|g]txd:c<Q(zo (13)

where Eg = lm  E,,.Then there exists the functionsui,ug : [0,T] x Q@ — R

m——+00

satisfying (6)-(9).

Proof of Theorem 1. Let 7 be an integer for which H(Q) C Wi (Q) is continuous. Then
the eigenfunctions of —A"wy, = Aywy in Hj(2) yields a Galerkin basis for both Hj(€2) and
Ly(Q2). For each m € N, let us put V,,, = Span {w1, wa, ..., wy}.

We search for the function

m
u]m Zh]km wg , j: 1727
k=1

that for any v € Vi, ujm(t) satisfies the approximate equation

/ { Ujm Aguj,, + (—A)* u}m — fj (u1,,,u2,,) — gj(t,:n)} vdx = 0, (14)

with the initial conditions
!
uj,, (0) = @j, uj (0) =y, (15)

where j = 1,2, m =1,2,...,p;,, and 1, are chosen in V, such that
Qi — 5 in WS (Q) and 1;,, — b in Ly(), j=1,2. (16)
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Taking v = wy, k=1,2,...,m, we see that
/ { v, = Aquj,, + (=A)" ), — fj (ur,,, uz,,) — g;j(t, =)} wydr=0 (17)

has a local solution (w14, (t), u2m(t)) in the interval [0,7,,). In the next step we obtain a’priori
estimates for the solution (w1 (t), u2m(t)) that can be extended to the whole interval [0, 7).

A priori estimates: Multiplying both sides of (17) by «Tl;u;km (t) and summing the obtained
equalities in £ = 1,2, ..., m and then integrating we have

1 1
2a; Jq qa; Jq
1 t o ! 2 t /
+— {V “jm‘ dxdt — fi(u,,,us,,) uj dxdt = (18)
aj 0 0 0 Q
=50 /|¢Jm| da:+/ |V<pjm|qd$+/ /gJ (t,x u; (t,x)dxdt.
a;

On the other hand
2 t
Z/ /ij (u1,,, ua,,) wj drdt =
j=1"0
- - 1
— f(f/ |:|U1m|p 1 |uQm|P+1 ulmullm + ’u1m|P+1 ’u2m|p 1 Usz/Qm dr — ( 9)
Q

B /Q |u1m’p+1 |u2m’p+1 dr — /Q ‘QOIm’p—H “P?m‘p—H dr.

From (6) and (7) it follows that

1 1 1 [t
> [/ A — /|vujm|‘1dx+/ / v, | dxdt] <
: 2a.7 Q qa] Q (Ij 0 JO

7=1
2
1/ 2 1 +1 +1
<3 d$+/|v¢‘m|qu+ /m P ol e + 20
;2%’ a7 ga; Jo' 7’ o " (20)

—|—/!u1m\”+1 |ugm|” 1 da + Z //g] (t,z) uj (t,x)dxdt
Q 1Y
j=

Applying Holder’s inequality we get

1/2 1/2
/ s+ uze | de < </ lulmf“’“)dﬂc) ' (/ lwmr?("*”dx)
Q Q Q
< /!ulm\Q(pH)dx + / \uQm]2(p+1)d:U
Q Q

Using embedding theorems (Lions & Majens, 1969), we obtain

2 2(p+1)
@ >=1 W&
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Further, using the Young inequality, we have the following inequality

2
A
p+1 Pl g < Vu; |9d B 21
[ bl a7 2_:/9| i+ M (21)

qa1’ qaz

From (16), (20) and (21) we obtain an a’priori estimate

where 0 < ¢ <min{i L }

11 1 t
€ [/ |y | da + - /|Vujm\‘1dx+/ / v, | dardt] < A0<t<T. (22)
a; [2 Jo' ™ q Ja 0 Ja m

If follows that the solutions of the approximated problem (14), (15) can be extended to [0,T].
Considering (22) we have

2

J=1

{ujm} is bounded in Loo(0,T; W(;;(Q)), j=1,2; (23)
{u},} is bounded in Loo(0,T; La(2)), j=1,2; (24)
{AY,,} is bounded in Ly(0,T; La()), j=1,2; (25)
{—=Aqujm} is bounded in L (0,T; Wqu(Q)), j=1,2. (26)

(see (Lions, 1969), (Lions & Majens, 1969)).
0
Since H*(Q) € W} (Q)), from (26) follows that

{u},,} is bounded in Ly(0,T; H™"(5)). (27)

Taking into account (23)-(27), from the sequence {(u1m,u2m)} we can select a subsequence
{ (w1, u2,)} such that

Uju — uj weakly in Lo (0,7 VI(/)ql(Q)), (28)
uj, — uj weakly in Loo(0,T; La(2)), (29)
A%ugﬂ — A%u; weakly in L2(0,T; La2(2)), (30)
Aquj, — X weakly in Lo(0,T; Wqﬂ(Q)) (31)

In view of the continuity of the embedding
0
Wy | 0, TsWE(R), La() | € C ([0, T); La(9))

(see (Lions & Majens, 1969)), it follows from (28), (29) that
Wjm — uj strongly in C([0,T]; L2(R2)),7 = 1,2. (32)
From (28), (29) follows that

Wy, — wy in Cy ([0, T; L2(9)), (33)
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ie. <u;m, y> — (uj,v) for any v € La(2)( see (Lions & Majens, 1969)).
%

On the other hand due to compactness of the embedding D <(—A) ) C Ly(9), from (29)
and (30) we obtain that

W, — uj strongly in Ly(0,T; L(2)), j =1,2. (34)
(see[14]).
Taking into account conditions (4),(5) from (28) we have
T 2(p+1)
/ / ’yulmvﬂ o [P ury| T dzdt < C, (35)
0 Q
T 2(p+1)
/ / e e A ™ ) (36)
0 Q
On the other hand, from (32) we have
utm P ug P utm — Jur " ugl uy e in (0,7 x Q, (37)
urm|” o P g = [ [P ua | ua, ace. in [0,T] x Q. (38)
Then using Lemma 3.1 from Lions (1969) in (29)-(38) we get
. 2(p+1) .
[i(Uim, uom) = fj(u1, u2) weakly in L 20+1 OaT;L22(P+1) ), j=12 (39)
ot

With the convergence of (28)-(38) we can pass to limit in the approximate equations and
get

/

% (uj(t)ﬂyj) + <Xj(t)7yj> + ((_A)a u}(t),V]’) - (fj(u17u2)7yj) = (gj(t7 ')7Vj) ,J=1,2 (40)

for all v1,v5 € W} (€2) , in the sense of distributions.
In (40) we set v = ujm(t),j = 1,2 and integrate both sides of the obtained inequality. Then
we have

T
/0 (Aqtujm (), wjm (t)) dt = (W, (T), wujim(T)) = (f (0), 1jm (0)) +
T Q Qa T
" /0 (22t (1), (~2) 2 (1)) /0 (f (s tom) g () dt = (41)

T
- /0 (95t ), wjm (1)) d.

From (32), (33) we obtain

(u;m(T),Ujm(T)) — (u;(T),uj(T)) , (42)
(W) (0), ujm (0)) — (u5(0), u;(0)) . (43)
Then from (40)-(43) we get
T T
T [ (0w (0) < /0 (i (1), 5 (1)) dt.
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From monotonicity of —A, follows that

X5 (t) = Aqu; () (44)

(see (Lions, 1969)).
Thus, from (40) and (44) it follows that (ui(t), u2(t)) is a solution of problem (1)-(3).
Proof of Theorem 2. From (20) we obtain

2 2
1 2
> 5 [ it 27 o+ Q > IVisnt. )l o | +

>

2 T
<E,+ g / / [i(t, @) wjm (¢, x)dxdt.

Agu;-(t,x) dxdt < (45)

Since fQ‘AQU (t x)) dr > A [ |

Lt x)‘ dx , then from (45) we have

IN

2 1 9 2
> g Mt e @ L I¥m g

Jj=1

E+WZ/ /|f]t;n|dmdt (46)

Lemma 1.There exists a number N, such that for any m > N

2
D Vg (t,2)[8 < 20 (47)
j=1

1s valid .
On the other hand if 0 < z < 2y then

0 < Q(2) < Q(20). (48)
Then, by Lemma 1
2
S IVt 2) 9, g | = 0. (19)
j=1
Then from (46) and (49) follows that
21
3 / (it ) dz < C, € [0, ). (50)
= 2(10 Q

By (47) and (50), a priori estimate (22) holds.
Proof of Lemma 1. Suppose (46) is false. Then for each m > N, there exists
t € [0, ty] such that

ZHVu]m MY, @) = 70, Ym > No. (51)
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By virtue of (12) and (16), there exists Ny for which

2
S ()%, ) < 20 ¥m > Ny
=1

Then by continuity of ||w;, (t)Hg there exists t3, € [0, t,,] such that

2
S IV (I ) = 20,
=1

where

2
Q Zluwjmwuiq(m >0, telotn]. (52)
]:

From (48) and (52) there exists N > Ny and 5 € (0, z9) such that

2
0< 5 @ +Q | S husm®)l2 ) < Q8). Yt € [0,153], ¥m > N.
j=1

Considering the monotonicity of Q(z) in [0, z9] we get,
0 <37 lujm(®)] < B < 20, Vt € [0,13,] and in particular Y7 [[ujm (5,)[1¢ < 20
that contradicts to(51).
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