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1 Introduction

The study of the existence and asymptotic behavior of global solutions of initial-boundary value
problems for the wave equation with nonlinear operators such as

utt −∆qu+ (−∆)α ut − h (u) = φ (t, x)

where ∆qu =
∑∞

i=1
∂
∂xi

(∣∣∣ ∂u∂xi

∣∣∣q ∂u
∂xi

)
, 0 < α < 1|h(u)| ≈ |u|p is investigated in (Gao & Ma,

1999), (Hongjun & Hui, 2007).
For this problem, Gao & Ma (1999) (see also (Hongjun & Hui, 2007)) obtained the global

existence of the solution when q > p with small initial data when q ≤ p. When q = 2, with the
linear damping term α = 0 , Levine (1974) and (Levine, 1974) proved that solution blows up
in the finite time with negative initial energy. When q = 2, and the damping term is given by
|ut|r ut, r ≥ 0, many authors studied the existence and uniqueness of the global solution and
the blowup of the solution, (see (Levine et al., 1997), (Georgiev & Todorova, 1994)).

In this paper we consider the nonlinear initial-boundary value problem{
u1tt −∆qu1 + (−∆)α u1t − f1 (u1, u2) = g1 (t, x) ,
u2tt −∆qu2 + (−∆)α u2t − f2 (u1, u2) = g2 (t, x) ,

(1)

uj (t, x) = 0, t > 0, x ∈ ∂Ω , j = 1, 2, (2)

uj (0, x) = φj (x) , ujt (0, x) = ψj (x) , x ∈ Ω , j = 1, 2. (3)

Here Ω is a bounded domain in Rn, n ≥ 1 with smooth boundary ∂Ω, t > 0; x ∈ Ω;0 <
α ≤ 1,f1(u1, u2) = a1 |u1|ρ−1 |u2|ρ+1 u1; f2(u1, u2) = a2 |u1|ρ+1 |u2|ρ−1 u2;g1, g1 : [0, T ] × Ω →
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R;∆qu =
∑∞

i=1
∂
∂xi

(∣∣∣ ∂u∂xi

∣∣∣q ∂u
∂xi

)
;q ≥ 2, a1 , a2 ∈ R and (−∆)αu =

∑∞
j=1 λ

α
j (u, φj)φj , where

0 < λ1 < λ2 ≤ λ3 ≤ ...; φ1, φ2, φ3, ... are the sequence of eigenvalues and eigenfunctions of −∆
in H1

0 (Ω), respectively.

The norm in Lq(Ω) is denoted by ∥∥q and in
◦
W 1

q (Ω) we use the norm

∥u∥qq,1 =
n∑

j=1

∥∥uxj

∥∥q
q
.

We give some of the basic properties of the operators used here. The degenerate operator

∆qu is bounded, monotone and hemicontinuous from
◦
W 1

q (Ω) to W
−1
q′ (Ω), where 1

q +
1
q′ = 1. The

(−∆)α powers for the Laplacian operator is defined by

(−∆)αu =

∞∑
j=1

λαj (u, φj)φj .

We investigate the existence of the global solutions of problem (1) - (3).
In the case q = 2, α = 0 this problem was studied in (Medeiros & Miranda, 1990), (Miranda & Medeiros,
1987), (Aliev & Yusifova, 2017), (Aliev & Rustamova, 2016), (Wang, 2009), (Ye, 2014).

2 Preliminaries and main results

Assume that
0 < ρ <

nq

2(n− q)
− 1, for n > q, (4)

0 < ρ < +∞ for n ≤ q. (5)

To prove the existence of global solutions we use the Galerkin method.

Theorem 1. Let conditions (4)-(5) hold, and ρ < q−1
2 . Then for any uj0 ∈

◦
W 1

q (Ω), uj1 ∈
L2(Ω) and gj(.) ∈ L2([0, T ] × Ω) , j = 1, 2 there exists a functions u1, u2 : [0, T ] × Ω → R such
that

uj ∈ L∞(0, T ;
◦
W 1

p (Ω)), (6)

u′j ∈ L∞(0, T ; L2(Ω))
∩
L2(0, T ; D((−∆)

α/2)), (7)

uj(0) = uj0, u′j(0) = uj1 , j = 1, 2, (8)

ujtt −∆quj + (−∆)α ujt − fj (u1, u2) = gj (t, x) , j = 1, 2 . (9)

Next we consider an existence result when ρ ≥ q−1
2 . In this case, the global solution is obtained

with small initial data.
Using the Holder and Young inequality we have∫

Ω
|φ1mφ2m|ρ+1 dx ≤ 1

2

2∑
j=1

∫
Ω
|φjm|2(ρ+1) dx ≤

≤
C2(ρ+1)

2(ρ+1)

2

2∑
j=1

[∫
Ω
|∇φjm|q dx

] 2(ρ+1)
q

≤ C2(ρ+1)

2(ρ+1)

 2∑
j=1

∫
Ω
|∇φjm|q dx


2(ρ+1)

q

, (10)
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where C
2(ρ+1)

is the Sobolev constant for the inequality

∥φ∥L2(ρ+1)(Ω) ≤ C2(ρ+1 ∥∇φ∥L2(ρ+1)(Ω) .

For each m ∈ N we put

Em =
2∑

j=1

1

2aj

∫
Ω
|ψjm|2 dx+

1

qa0

2∑
j=1

∫
Ω
|∇φjm|q dx+ C2(ρ+1)

2(ρ+1)

 2∑
j=1

∫
Ω
|∇φjm|q dx


2(ρ+1)

q

, (11)

where a0 = min {a1, a2}.
We also introduce the polynomial

Q(z) =
1

qa0
z − C2(ρ+1)

2(ρ+1) z
2(ρ+1)

q .

Q(z) increases in [0, z0] , where

z0 =

 1

2a0(ρ+ 1)C
2(ρ+1)
2(ρ+1)


q

2(ρ+1)−q

.

Theorem 2. Let conditions (4),(5) hold, ρ ≥ q−1
2 ,uj0 ∈

◦
W 1

q (Ω), uj1 ∈ L2(Ω) and gj(.) ∈
L2([0, T ]× Ω) , j = 1, 2. Suppose inaddition that initial data satisfy the following conditions

2∑
j=1

∥∇φj∥qLq(Ω) < z0, (12)

E0 +
1

4λα1

2∑
j=1

∫ T

0

∫
Ω
|gj(t, x)|2 dx < Q(z0), (13)

where E0 = lim
m→+∞

Em.Then there exists the functionsu1, u2 : [0, T ]× Ω → R

satisfying (6)-(9).

Proof of Theorem 1. Let r be an integer for which Hr
0(Ω) ⊂

◦
W 1

0 (Ω) is continuous. Then
the eigenfunctions of −∆rwk = λkwk in Hr

0(Ω) yields a Galerkin basis for both Hr
0(Ω) and

L2(Ω). For each m ∈ N , let us put Vm = Span {w1, w2, ..., wn}.
We search for the function

ujm(t) =
m∑
k=1

hjkm(t)wk , j = 1, 2,

that for any v ∈ Vm, ujm(t) satisfies the approximate equation∫
Ω

{
u′′jm −∆qujm + (−∆)α u′jm − fj (u1m , u2m)− gj(t, x)

}
vdx = 0, (14)

with the initial conditions

ujm (0) = φjk , u′jm (0) = ψjm , (15)

where j = 1, 2, m = 1, 2, ...,φjm and ψjm are chosen in Vm such that

φjm → φj in
◦
W 1

q (Ω) and ψjm → ψj in L2(Ω), j = 1, 2. (16)
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Taking v = wk, k = 1, 2, ...,m, we see that∫
Ω

{
u′′jm −∆qujm + (−∆)α u′jm − fj (u1m , u2m)− gj(t, x)

}
wk dx = 0 (17)

has a local solution (u1m(t), u2m(t)) in the interval [0, Tm). In the next step we obtain a’priori
estimates for the solution (u1m(t), u2m(t)) that can be extended to the whole interval [0, T ].

A priori estimates: Multiplying both sides of (17) by 1
aj
u′jkm(t) and summing the obtained

equalities in k = 1, 2, ...,m and then integrating we have

1

2aj

∫
Ω

∣∣u′jm∣∣2 dx+
1

qaj

∫
Ω
|∇ujm |

q dx+

+
1

aj

∫ t

0

∫
Ω

∣∣∇αu′jm
∣∣2 dxdt− ∫ t

0

∫
Ω
fj (u1m , u2m) u

′
jmdxdt =

=
1

2aj

∫
Ω
|ψjm |

2 dx+
1

qaj

∫
Ω
|∇φjm |

q dx+
1

aj

∫ t

0

∫
Ω
gj (t, x) u

′
jm(t, x)dxdt.

(18)

On the other hand

2∑
j=1

∫ t

0

∫
Ω
fj (u1m , u2m) u

′
jmdxdt =

=
∫ t
0

∫
Ω

[
|u1m|ρ−1 |u2m|ρ+1 u1mu

′
1m + |u1m|ρ+1 |u2m|ρ−1 u2mu

′
2m

]
dx =

=

∫
Ω
|u1m|ρ+1 |u2m|ρ+1 dx −

∫
Ω
|φ1m|ρ+1 |φ2m|ρ+1 dx.

(19)

From (6) and (7) it follows that

2∑
j=1

[
1

2aj

∫
Ω

∣∣u′jm∣∣2 dx+
1

qaj

∫
Ω
|∇ujm |

q dx+
1

aj

∫ t

0

∫
Ω

∣∣∇αu′jm
∣∣2 dxdt] ≤

≤
2∑

j=1

1

2aj

∫
Ω
|ψjm |

2 dx+
1

qaj

∫
Ω
|∇φjm |

q dx+

∫
Ω
|φ1m|ρ+1 |φ2m|ρ+1 dx +

+

∫
Ω
|u1m|ρ+1 |u2m|ρ+1 dx+

2∑
j=1

1

aj

∫ t

0

∫
Ω
gj (t, x) u

′
jm(t, x)dxdt

(20)

Applying Holder’s inequality we get

∫
Ω
|u1m|ρ+1 |u2m|ρ+1 dx ≤

(∫
Ω
|u1m|2(ρ+1) dx

)1/2
·
(∫

Ω
|u2m|2(ρ+1) dx

)1/2
≤
∫
Ω
|u1m|2(ρ+1) dx +

∫
Ω
|u2m|2(ρ+1) dx

Using embedding theorems (Lions & Majens, 1969), we obtain

∫
Ω
|u1m|ρ+1 |u2m|ρ+1 dx ≤ A0

2∑
>=1

(∫
Ω
|∇ujm |

q dx

)2(ρ+1)

.
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Further, using the Young inequality, we have the following inequality∫
Ω
|u1m|ρ+1 |u2m|ρ+1 dx ≤ ε

2∑
>=1

∫
Ω
|∇ujm |

q dx+
A0q

2ε (ρ+ 1)
, (21)

where 0 < ε < min
{

1
qa1
, 1
qa2

}
.

From (16), (20) and (21) we obtain an a’priori estimate

2∑
j=1

1

aj

[
1

2

∫
Ω

∣∣u′jm∣∣2 dx+
1

q

∫
Ω
|∇ujm |

q dx+

∫ t

0

∫
Ω

∣∣∇αu′jm
∣∣2 dxdt] ≤ A, 0 ≤ t ≤ T. (22)

If follows that the solutions of the approximated problem (14), (15) can be extended to [0,T].
Considering (22) we have

{ujm} is bounded in L∞(0, T ;
0

W 1
q (Ω)), j = 1, 2; (23)

{u′jm} is bounded in L∞(0, T ; L2(Ω)), j = 1, 2; (24)

{∆αu′jm} is bounded in L2(0, T ; L2(Ω)), j = 1, 2; (25)

{−∆qujm} is bounded in L∞(0, T ; W−1
q′ (Ω)), j = 1, 2. (26)

(see (Lions, 1969), (Lions & Majens, 1969)).

Since H2 (Ω) ⊂
0

W 1
q (Ω)), from (26) follows that

{u′′jm} is bounded in L2(0, T ; H
−r(Ω)). (27)

Taking into account (23)-(27), from the sequence {(u1m, u2m)} we can select a subsequence
{(u1µ, u2µ)} such that

ujµ → uj weakly in L∞(0, T ;
0

W 1
q (Ω)), (28)

u′jµ → u′j weakly in L∞(0, T ; L2(Ω)), (29)

∆
α
2 u′jµ → ∆

α
2 u′j weakly in L2(0, T ; L2(Ω)), (30)

∆qujµ → χj weakly in L∞(0, T ; W−1
q′ (Ω)). (31)

In view of the continuity of the embedding

W 1
2

(
0, T ;

0

W 2
1 (Ω), L2(Ω)

)
⊂ C ([0, T ];L2(Ω))

(see (Lions & Majens, 1969)), it follows from (28), (29) that

ujm → uj strongly in C([0, T ]; L2(Ω)), j = 1, 2. (32)

From (28), (29) follows that

u′jm → u′j in Cw([0, T ]; L2(Ω)), (33)
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i.e.
⟨
u′jm, ν

⟩
→ ⟨uj , ν⟩ for any ν ∈ L2(Ω)( see (Lions & Majens, 1969)).

On the other hand due to compactness of the embedding D
(
(−∆)

α
2

)
⊂ L2(Ω), from (29)

and (30) we obtain that

u′jm → u′j strongly in L2(0, T ; L2(Ω)), j = 1, 2. (34)

(see[14]).
Taking into account conditions (4),(5) from (28) we have∫ T

0

∫
Ω

∣∣∣|u1m|ρ−1 |u2m|ρ+1 u1m

∣∣∣ 2(ρ+1)
2ρ+1

dxdt ≤ C, (35)

∫ T

0

∫
Ω

∣∣∣|u1m|ρ+1 |u2m|ρ−1 u2m

∣∣∣ 2(ρ+1)
2ρ+1

dxdt ≤ C. (36)

On the other hand, from (32) we have

|u1m|ρ−1 |u2|ρ+1 u1m → |u1|ρ−1 |u2|ρ+1 u1 , a.e. in [0, T ] × Ω, (37)

|u1m|ρ +1 |u2,|ρ −1 u2m → |u1|ρ+1 |u2|ρ−1 u2, a.e. in [0, T ] × Ω. (38)

Then using Lemma 3.1 from Lions (1969) in (29)-(38) we get

fj(u1m, u2m) → fj(u1, u2) weakly in L
2(ρ+1)
2ρ+1

(
0, T ;L 2(ρ+1)

2ρ+1

(Ω)

)
, j = 1, 2. (39)

With the convergence of (28)-(38) we can pass to limit in the approximate equations and
get

d

dt

(
u

′
j(t), νj

)
+ ⟨χj(t), νj⟩+

(
(−∆)α u′j(t), νj

)
− (fj(u1, u2), νj) = (gj(t, ·), νj) , j = 1, 2 (40)

for all ν1, ν2 ∈W 1
q (Ω) , in the sense of distributions.

In (40) we set νj = ujm(t), j = 1, 2 and integrate both sides of the obtained inequality. Then
we have ∫ T

0
(∆qujm(t), ujm(t)) dt =

(
u′jm(T ), ujm(T )

)
−
(
u′jm(0), ujm(0)

)
+

+

∫ T

0

(
(−∆)

α/2 u′jm(t), (−∆)
α/2 ujm(t)

)
dt−

∫ T

0
(fj(u1m, u2m), ujm(t)) dt =

=

∫ T

0
(gj(t, ·), ujm(t)) dt.

(41)

From (32), (33) we obtain (
u′jm(τ), ujm(τ)

)
→
(
u′j(T ), uj(T )

)
, (42)

(
u′jm(0), ujm(0)

)
→
(
u′j(0), uj(0)

)
. (43)

Then from (40)-(43) we get

lim
µ→∞

∫ T

0
(∆qujµ(t), ujµ(t)) dt ≤

∫ T

0
(χj(t), uj(t)) dt.
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From monotonicity of −∆q follows that

χj(t) = ∆quj(t) (44)

(see (Lions, 1969)).
Thus, from (40) and (44) it follows that (u1(t) , u2(t)) is a solution of problem (1)-(3).
Proof of Theorem 2. From (20) we obtain

2∑
j=1

1

2a0

∫
Ω

∣∣u′jm(t, x)2
∣∣ dx+Q

 2∑
j=1

∥∇ujm(t, x)∥qLq(Ω)

+

+

2∑
j=1

∫ T

0

∫
Ω

∣∣∣∣∣∆
α

2 u′j(t, x)

∣∣∣∣∣
2

dxdt ≤

≤ En +

2∑
j=1

∫ T

0

∫
Ω
fj(t, x)ujm(t, x)dxdt.

(45)

Since
∫
Ω

∣∣∣∆α
2 u′j(t, x)

∣∣∣2 dx ≥ λα1
∫
Ω

∣∣∣u′j(t, x)∣∣∣2 dx , then from (45) we have

2∑
j=1

1

2a0

∫
Ω

∣∣u′jm(t, x)
∣∣2 dx+Q

 2∑
j=1

∥∇ujm(t, x)∥qLq(Ω)

 ≤

≤ En +
1

4λα1

2∑
j=1

∫ T

0

∫
Ω
|fj(t, x)|2 dxdt. (46)

Lemma 1.There exists a number N, such that for any m > N

2∑
j=1

∥∇ujm(t, x)∥qq < z0 (47)

is valid .
On the other hand if 0 < z < z0 then

0 ≤ Q(z) ≤ Q(z0). (48)

Then, by Lemma 1

Q

 2∑
j=1

∥∇ujm(t, x)∥qLq(Ω)

 ≥ 0. (49)

Then from (46) and (49) follows that

2∑
j=1

1

2a0

∫
Ω

∣∣u′jm(t, x)
∣∣2 dx ≤ C, t ∈ [0, tm]. (50)

By (47) and (50), a priori estimate (22) holds.
Proof of Lemma 1. Suppose (46) is false. Then for each m > N , there exists

t ∈ [0, tm] such that

2∑
j=1

∥∇ujm(t)∥qLq(Ω) ≥ z0, ∀m > N0. (51)
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By virtue of (12) and (16), there exists N0 for which

2∑
j=1

∥ujm(0)∥qLq(Ω) < z0 ∀m > N0

Then by continuity of ∥ujm(t)∥qq there exists tαm ∈ [0, tm] such that

2∑
j=1

∥∇ujm(tαm)∥qLq(Ω) = z0,

where

Q

 2∑
j=1

∥∇ujm(t)∥qLq(Ω)

 ≥ 0, t ∈ [0, tαm]. (52)

From (48) and (52) there exists N > N0 and β ∈ (0, z0) such that

0 ≤ 1

2

∥∥u′m(t)
∥∥2 +Q

 2∑
j=1

∥ujm(t)∥qq

 ≤ Q(β), ∀t ∈ [0, tαm], ∀m > N.

Considering the monotonicity of Q(z) in [0, z0] we get,

0 ≤
∑2

j=1 ∥ujm(t)∥qq ≤ β < z0, ∀t ∈ [0, tαm] and in particular
∑2

j=1 ∥ujm(tαm)∥qq < z0
that contradicts to(51).
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Lions, J.L. Majens E. (1969). Problems aux limits non homogeneous applications, Vol. 1, Dunod,
Paris.

176


